Zschimmer & Schwarz

Synthetic Ester Selection for High-Performance Industrial Lubricants and Metalworking Fluids

Dr. Tobias Platen

UNITI-2023

Zschimmer & Schwarz – Company Profile

First in-house

production

1959 - 2019

125th anniversary and construction of new company headquarters

▼ Ceramic Auxiliaries

▼ Leather Auxiliaries

Textile Auxiliaries

▼ Fibre Auxiliaries

Personal Care

Cleaning Specialties

Industrial Specialties

▼ Paints & Coatings

Lubricants

Restructuring of business divisions

Foundation of the company in Chemnitz, Germany

New company headquarters in Oberlahnstein & Rapid growth and increasing globalisation

Company Profile

What are synthetics?

- Synthetic is a marketing term that signifies higher performance and generally denotes the base oil is made by chemical synthesis
- ► The American Petroleum Institute (API) defines 4 categories of hydrocarbons used in lubricants

	Base Oil Category	Sulfur [%]		Saturates [%]	Viscosity Index	Total Production [%]	Relative Cost	
<u>ra</u>	Group I (solvent refined)	> 0.03	and/or	< 90	80 to 120	46	1	
Mineral	Group II (hydrotreated)	< 0.03	and	> 90	80 to 120	47	1.05	
<u>ပ</u>	Group III (hydrocracked)	< 0.03	and	> 90	> 120	3	1.5	
Synthetic	Group IV		PAO Sy	nthetic Lubricant	2	2.5 to 3		
Syl	Group V	All other b	ase oils no	t included in Grou	1.6	5 to 10+		

From: https://www.machinerylubrication.com/Read/618/new-lubes

3

Base Stock or Lubricity Additive

Does the application require performance that a petroleum oil cannot deliver?

Biogenic content

EcoLabel compliance

Biodegradability

VGP/VIDA aquatic safety

Incidental Food Contact

Fire resistance

High VI for energy efficiency

Is friction reduction required as part of the antiwear and extreme pressure additive package?

Metal Forming

Metal Removal

Cutting

Grinding

Esters are unique

- ► The ester bond structure links an organic acid and alcohol
 - Very good control of the molecular structure
- Many starting materials available many possible combinations
- Permanent dipole moment of 1.7 Debye
 - More polar than hydrocarbons
- Choose the feedstocks based on the demands of the application
- Esters are designed to be fit for purpose

Huge Solution Space

Take to desperate the contractive to the contractiv

		Monoacids								Diacids				Aromatic Acids							
Methanol		1	21	41	61	81	101	121	141	161	181	201	221	241	261	281	301	321	341	361	381
Ethanol		2	22	42	62	82	102	122	142	162	182	202	222	242	262	282	302	322	342	362	382
Propanol	"	3	23	43	63	83	103	123	143	163	183	203	223	243	263	283	303	323	343	363	383
Butanol	şë	4	24	44	64	84	104		144		184	204	224	244	264	284	304	324	344	364	tiC
Octyl-Decylalcohol	Monoalcohols	5	25	45	65	85	105 nO '	125	ter	165	185	205	225	245	265	285	305	3/5	ror	US	tiC er
Isobutanol	Joa	6	26	46	66	ΛO	u_{0}	62	146	166	186	206	226	246	²⁶⁵ 9)	Sie	306	326	346	366	386
2-Ethylhexanol	Mol	7	27	47	67 °	87	107	127	147	167	187	207	227	247	267	287	307	327	34 E	SI	387
2-Propylheptanol		8	28				108		148		188		228	248				328			388
Isotridecanol		9	29		69		109		149		189		229	249	269	289	309	329	349		389
Dodecanol		10			70		110		150		190		230	250	270	290	310	330			390
Neopentylglycol	<u>s</u>	11	31	51	71	91	111	131	151	171	191	211	231	251	271	291	311	331	351	371	391
Trimethylolpropane	òho	12			72		112	132	ter	172	192		232	252	272		312				392
Pentaerithrytol	Polyfunctional Alcohols	13			73	ool	112 y0	133	153		193		233	253	273		313				393
Dipentaerythrytol	na	14	34		74	94	114		154		194		234	254	274		314		354 eS 356 357	374	394
Glycerine	cţic	15	35	55	75	95	115	135	155	175	195	215	235	255	275	295	315	×δ	es'	3/5	395
Diglycerine	- Lu	16	36	56	76	96	116		156		196		236	256	C	M	bic	336	356		396
Sorbitol	oly	17	37		77		117		157		197		237	257	277	297	317		357		397
Ethylene Glycol	and F	18	38	58	78	98	118	138	158	178	198	218	238	258	278	298	318	338	358	378	398
Propylene Glycol	- a	19	39	59	79	99	119	139	159	179	199	219	239	259	279	299	319	339	359	379	399
Hexanediol	ä	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400

Monoesters

60 - 90% renewable carbon

Typically made from natural fatty acids and mono-alcohols

biodegradable

Low viscosity

Low odor and colour

Environmentally and Worker friendly

Metalworking

Textile lubricants

Aerosol products

Adjuvants

Biobased Jubricants

HX1 grades available

Diesters

Typically no biobased content

Two ester groups derived from dibasic acid + alcohols

biodegradable

Low viscosity(2-5 cSt at 100°C, ISO VG 10-22)

- Engine oils
- Compressors oils
- Hydraulic fluids
- Grease
- Bearings
- Seal swell additives

- Low volatiliy
- Excellent cold flow, wide temp. range
- Oxidative stability

Polyol esters

many are biobased

Stabilized at the β-carbon

biodegradable

higher viscosity(2-25 cSt at 100°C, ISO VG 15-320)

- Low volatiliy
- High Flashpoint
- Oxidative stability

- Compressor oil
- Fire resistant hydraulic fluids
- Oven Chain oils
- Aviation turbine engine oils
- Gear oils
- HX-1 products available

Complex esters

Can be biobased

Can be biodegradable

Very high viscosity possible

- Low volatility/High Flashpoint
- High Viscosity Index
- Antiwear/Extreme pressure

Capped polymeric ester

- Compressor oil
- Gear oils
- Grease
- Thickening
- Metal protection
- HX-1 products available

Aromatic esters

Not biobased

Can be biodegradable

High viscosity

- Low volatility/High Flashpoint
- Reduced varnish deposits
- Stable against oxidation & hydrolysis

Made from aromatic anhydrides and mono-alcohols

- Compressor oil
- Gear oils
- Grease
- Oven chain lubricants
- Plasticizers

Not always synergistic effects

There is not the one fits all solution...

... properties need to be balanced to the intended application

Esters are used to formulate the highest performance fluids

- Hydraulic fluids
- Oven chain oils
- Grease
- Compressor fluids
- Transformer oils
- Metalworking fluids
- Environmentally sensitive applications

- Engine oils
- Transmission fluids
- Gear oils
- Drilling mud lubricants
- ► H1 Food Grade lubes
- Fiber finish lubricants
- Jet turbine engines
- Dielectric Coolants

Designed for Diverse Applications

- Synthetic Esters can be designed to perform under the specific conditions the application demands
- Work with an expert to make sure you have the right tailor-made ester for the job

Hydraulic Fluids

- Low sludge clean, long life
- High viscosity index energy efficient
- Environmentally friendly
- Marine (VGP/VIDA), mining, forestry, agriculture
 - Biobased, biodegradable esters
- Fire Resistant- FM Approved/HFD
 - Polyol ester oleates
- Food processing plants
 - NSF H1 Polyol ester-based fluids

Hydraulic Fluids

Ester based HF ISO 46	ASTM	Typical
Flash point	D-92	320°C
Fire point	D-92	360°C
Pour point	D-97	-40°C
Viscosity index	D-2270	210
FZG gear test	D-5182	Stage 12
Vane Pump Test	D-2882	<5 mg wear
Copper Corrosion	D-130	1a
Rust prevention A/B	D-665	Pass
Biodegradability (OECD)	301B	Readily

Data courtesy Zschimmer & Schwarz

High performance, Factory Mutual fire resistant, Environmentally friendly, H1 (Use in food plants)

Photo courtesy US Navy

Compressor Lubricants

- Low volatility less lubricant carryover
- Low varnish no sticking valves or deposits
- Compatibility with HFC refrigerants
- Reciprocating and rotary vane compressors
 - Diesters for lubricity and solvency
- Rotary screw and centrifugal compressors
 - Polyol esters for oxidation stability
- Food processing applications
 - NSF H1 polyol ester-based fluids

Reliability and long life

Compressor Lubricants

Graph courtesy Ray Thibault, Consultant

the life of other synthetics in compressor applications

Polyol Esters can give double

20 hours at 260°C/500°F

Photo courtesy Zschimmer & Schwarz

Oven Chain Lubricants

- Low volatility- long relubrication intervals
- Low varnish- links move freely
- Surface lubrication- thin film wear prevention
- Industrial oven chains
 - POE/aromatic esters optimum clean
- Bakery tunnel ovens
 - H1 POE for clean and safe lubrication.
- Food conveyors
 - Biobased H1 POE- synthetic vegetable oil

Oven Chain Lubricants

200°C+ Esters are the best option for high temperature chains

89 hours at 240°C/464°F

TGA Isothermal 6 hours at 250°C

Environmentally acceptable lubricants (EAL)

- Synthetic Esters are environmentally friendly
 - Marine
 - Mining
 - Forestry
 - Agriculture
 - Transformers
 - Wind turbines
- Performance is as good or better than petroleum oils

Most esters meet USA EPA Marine (VGP)
Vessel General Permit standards

Many esters are renewable, sustainable, and have USDA BioPreferred status

 Wide variety of synthetic esters on LuSC list achieve EU Ecolabel status

Synthetic Ester Design Considerations

- Determine critical application performance requirements
 - Low cost Oleates, natural fatty acids, commodity raw materials
 - High viscosity Dipentaerythritol, complex esters
 - High viscosity index Linear structures, long chain fatty acids
 - Thermal stability Polyols, branched acids, fully saturated components
 - Biodegradability Natural fatty acids, less branching
 - Food contact Ingredients with detailed information on toxicity, NSF listed
- Build the ester from components that will give the desired properties

Product 1 ——Product 2

Thank you.

For More Information Visit:

ZSLubes.com

zschimmer-schwarz.com

